기본 콘텐츠로 건너뛰기

1. 표본공간과 확률변수

Ch1. 표본공간과 확률변수

통계 이론을 공부할 때 가장 먼저 알아야 될 용어는 확률실험입니다.

확률실험은 쉽게는 주사위 던지기부터 시작하여, 오늘 지각을 할지 안할지 실험하는 것 까지 모든 일상생활을 확률실험이라고 할 수 있습니다. 여기서 확률 실험의 모든 가능한 결과들의 집합을 표본공간(Sample Sapce)이라고 합니다.

만약, 동전을 던져 앞, 뒷면이 나오는지 확인하는 확률실험을 진행하였을 경우, 표본공간은 {앞, 뒤}가 됩니다.

다음으로는 통계학에서 가장 중요하다고 할 수 있는 확률변수(Random Variable)가 등장합니다.

확률변수(Random Variable)는 발생 가능한 모든 경우에 대해서 각각의 실숫값을 대입해주는 하나의 함수입니다. 표본공간의 각 원소 하나하나에 원하는 목적에 따라 그에 걸맞은 실수를 대입해 주는 것이죠.

직관적으로 받아들이기 쉽지 않은 개념이니 몇 가지 예를 통해 확인해보도록 합시다.

  • 성별

    어떤 팀에서 한 명을 리더로 선출하려고 하는데 성별에 관심이 있습니다. 이 경우 표본공간은 (남자,여자) 두 가지로 이루어진 집합이 될 것입니다. 이때 확률변수 X를 '여자는 0 남자는 1' 이라고 정의해 봅시다. 반대로 해도 상관 없습니다. 그렇다면 리더가 선출되었을 때 0또는 1이라는 확률변수 값을 얻을 수 있을 것입니다.

    이는 (남자, 여자)라는 표본공간에서 각 원소들을 0과 1이라는 실수로 전화해주는 변환 함수 입니다.

  • 주사위

    눈이 3까지 있는 주사위 두 개를 굴리는 상황입니다. 확률변수 Y를 '두 주사위 눈의 합'이라고 정의해 봅시다. 변수 Y라고 하면 나올 수 있는 경우는 다음과 같습니다.

경우Y
(1,1)2
(1,2) (2,1)3
(1,3) (3,1) (2,2)4
(2,3) (3,2)5
(3,3)6

가능한 경우는 총 9가지입니다. 이는 표본공간이 9개의 원소를 가지고 있는 집합이라는 뜻이고 '두 눈의 합' 이라는 함수인 확률변수는 총 5개의 값을 갖게 됩니다. 위 표에서 보면 표본공간은 왼쪽 부분이 되겠고 확률변수가 가질 수 있는 실수는 오른쪽이겠지요. 이렇게 표본공간에서 실수로 변환해주는 변환 함수가 확률변수입니다. 또한 확률변수의 특징은 각 경우가 나올 확률이 알려져 있다는 것입니다.

경우YP(Y)
(1,1)21/9
(1,2) (2,1)32/9
(1,3) (3,1) (2,2)43/9
(2,3) (3,2)52/9
(3,3)61/9

확률변수는 2가지로 나뉩니다.

  • 이산형 확률변수(Discrete Random Variable) : 어떤 값을 가질 확률을 계산하는 확률변수
  • 연속형 확률변수(Conituous Random Variable) : 어떤 구간 내에 포함될 확률을 계산하는 확률변수

주의해야 할 점은 확률변수는 그 자체로도 함수라는 사실입니다. 흔히 많은 분들이 확률변수와 확률함수를 헷갈리시는데, 확률변수는 표본공간에서 실수로 가는 함수이고 확률함수는 확률변수가 어떤 값을 가질 때(혹은 어떤 범위 내에 포함될 때)의 확률을 계산하는 함수입니다. 위 표에서는 세 번째 열이 확률함수 값이라고 할 수 있습니다.

이 블로그의 인기 게시물

6.1.2 고수들이 자주 쓰는 R코드 소개 2편 [중복 데이터 제거 방법]

Ch2. 중복데이터 제거하기 및 데이터 프레임 정렬 Ch2. 중복데이터 제거하기 및 데이터 프레임 정렬 흔하지는 않지만, 중복으로 입력되는 데이터 셋을 마주치는 일이 생기기 마련입니다. 보통 중복데이터는 데이터 수집단계에서 많이 발생합니다. 하지만 이를 하나하나 엑셀로 처리하는 것은 한계가 있기때문에, R에서 처리하는 방법에 대해 다루어 보고자 합니다. 1차원 벡터, 리스트에서의 중복 제거 A = rep(1:10, each = 2) # 1 ~ 10까지 2번씩 반복 print(A) ## [1] 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 # 중복 제거 unique(A) ## [1] 1 2 3 4 5 6 7 8 9 10 데이터 프레임에서의 중복 제거 다음과 같은 데이터 프레임을 예시로 삼겠습니다. 변수 설명 OBS : 번호 NAME : 환자 이름 ID : 환자 고유번호 DATE : 검사 날짜 BTW : Body total water 먼저, 환자 이름이 있고, 그 환자의 고유 ID가 있습니다. 세상에 동명이인은 많기 때문에 항상 고유 ID를 기록해둡니다. # 데이터 불러오기 DUPLICATE = read.csv("C:/R/DUPLICATED.csv") DUPLICATE ## OBS NAME ID DATE BTW ## 1 1 A A10153 2018-11-30 1 ## 2 2 A A10153 2018-11-30 3 ## 3 3 B B15432 2018-11-30 4 ## 4 4 A A15853 2018-11-29 5 ## 5 5 C C54652 2018-11-28 5 ## 6 6 C C54652 2018-11-27 6 ## 7 7 D D14...

4.4.1 R 문자열(TEXT) 데이터 처리하기 1

Ch4. 문자열 데이터 다루기 1 데이터 다운로드 링크: https://www.kaggle.com/PromptCloudHQ/imdb-data # 데이터 불러오기 DATA=read.csv("C:\\R/IMDB-Movie-Data.csv") Ch4. 문자열 데이터 다루기 1 이번에는 문자열 데이터를 처리하는 방법에 대해 다루겠습니다. 문자열을 다룰 때 기본적으로 숙지하고 있어야 하는 명령어는 다음과 같습니다. 문자열 대체 : gsub() 문자열 분리 : strsplit() 문자열 합치기 : paste() 문자열 추출 : substr() 텍스트마이닝 함수: Corpus() & tm_map(), & tdm() # 문자열 추출 substr(DATA$Actors[1],1,5) # 첫번째 obs의 Actors변수에서 1 ~ 5번째에 해당하는 문자열 추출 ## [1] "Chris" # 문자열 붙이기 paste(DATA$Actors[1],"_",'A') # 첫번째 obs의 Actors변수에서 _ A 붙이기, 기본적으로 띄어쓰기르 구분 ## [1] "Chris Pratt, Vin Diesel, Bradley Cooper, Zoe Saldana _ A" paste(DATA$Actors[1],"_",'A',sep="") # 띄어쓰기 없이 붙이기 ## [1] "Chris Pratt, Vin Diesel, Bradley Cooper, Zoe Saldana_A" paste(DATA$Actors[1],"_","Example",sep="|") # |로 붙이기 ## [1] "Chris Pratt, Vin Diesel, Bradley Cooper, Zoe Saldana|...

3. Resampling 방법론(Leave one out , Cross Validation)

Ch4. Resampling 방법론 이전 챕터에서는 앙상블에 대해 다루었습니다. 앙상블을 요약하자면, Training Set을 Resampling할 때 마다, 가중치를 조정할 것인지 말 것인지를 다루는 내용이었습니다. 이번에는 구체적으로 Resampling 방법들에 대해 다루어 보고자 합니다. 1. Resampling의 목적과 접근 방식 모형의 변동성(Variability)을 계산하기 위해서 입니다. Training Set으로 모형을 만들고, Test Set으로 Error rate를 계산하며, 이를 반복합니다. 각 실행 별, Error Rate 값이 계산이 될 것이며, 해당 Error rate의 분포를 보고 모형의 성능을 평가할 수 있습니다. Model Selection : 모형의 성능을 Resampling 방법론을 통해 평가한다면, 모델링 과정에서 어떤 변수를 넣어야 하고, 혹은 모형의 유연성(Flexibility)을 어느정도로 조절하는 것이 적당한지 결정을 할 수 있기 때문에 매우 중요한 방법론 중 하나입니다. 모형의 유연성에 대해서는 다음 챕터에서 설명하도록 하겠습니다. 2. Leave-One-Out Cross Validation(LOOCV) LOOCV는 n개의 데이터에서 1개를 Test Set으로 정하고 나머지 n-1개의 데이터로 모델링을 하는 방법을 의미합니다. LOOCV 방법은 데이터 수 n이 크다면, n번의 모델링을 진행해야되기 때문에, 시간이 오래 걸립니다. 회귀, 로지스틱, 분류모형 등에 다양하게 적용할 수 있습니다. 3. K - Fold Cross - Validation 연산시간이 오래걸린 다는 것은 곧, 작업시간이 길어진다는 의미이며 이는 곧 야근을 해야된다는 소리와 다를게 없어집니다. 그래서 시간이 오래걸리는 LOOCV를 대채하기 위하여 K-Fold Cross - Validation이 존재합니다. 위 그림은 데이터 셋을 총 4개의 Set로 구성하였습니다. Cross -...

4. 통계적 추정(점추정,구간추정)

Ch1. 점추정 추정량은 우리가 알고 싶어하는 모수를 표본들을 이용하여 단 하나의 점으로 추측하는 통계량입니다. 그 과정을 점추정(Point estimation)이라고 하며, 그렇게 얻어진 통계량을 점주청량(Point estimator)라고 합니다. 점추정량은 다양한 방식으로 구할 수 있습니다. 모평균을 추정하기 위한 표본평균 계산 각 끝의 일정 부분씩은 무시하고 나머지 표본들의 평균 계산(절삭 평균, Trimmed Mean) 등의 방법들이 있습니다. 하지만 가장 많이 쓰는 척도는 표본평균입니다. 그 이유는 대표적으로 수리적인 확장성과 표본평균의 분포를 비교적 쉽게 알 수 있다는 점을 들 수 있습니다. 점추정은 단순히 모평균을 추정하는 것만이 아닌, 회귀식을 추정하였을 때의 회귀계수도 점추정이라고 할 수 있습니다. (회귀분석은 후에 다룰 예정입니다.) 다만, 이런 점추정에도 몇 가지의 장점과 단점이 있습니다. 점추정의 장점 점추정량은 지극히 직관적이다. 통계를 모르는 누군가가 한국의 30대 여성의 평균 수입을 묻는다면 점추정량으로 즉각적인 답을 줄 수 있을 것입니다. 점추정량은 매우 직관적이며 합리적입니다. 점추정량은 우리가 원하는 수치를 대체할 구체적인 값을 제시해준다. 우리가 통계적인 모델링 혹은 함수를 작성하기 위해 30대 여성 수입의 평균치가 필요하나 모평균을 알 수 없을 때 점추정량으로 간단히 대체할 수 있습니다. 사실상 이는 대부분에 통계이론을 전개하는데 가장 중요한 역할을 합니다. 간단한 예를 말씀드리자면 모분산을 추정하기 위해서는 평균이 필요하기 때문에 표본평균을 이용합니다. 여기서 분산은 각 개별 값들이 평균에서 얼만큼 멀리 떨어져있는지에 대한 척도입니다. 그런데 우리는 '진짜 평균'을 알 수 없으니 아래 식과 같이 표본들의 평균으로 대체하는 것입니다. 여기서 평균 값을 표본평균으로 대체하였기에 표본분산은 n이 아닌 n-1으로 나누어 주게 됩니다. 이해를 돕기 위해 자유도에 대한 개념을 잠깐 다루도록 하...

3.2.3 R 시각화[ggplot2] 2편 (히스토그램, 밀도글래프, 박스플롯, 산점도)

R 데이터 시각화 2편 R 데이터 시각화 2편 데이터 다운로드 링크: https://www.kaggle.com/liujiaqi/hr-comma-sepcsv # 시각화 이전에 처리 되어 있어야 하는 시각화 DATA = read.csv('C:/R/HR_comma_sep.csv') DATA$left = as.factor(DATA$left) DATA$Work_accident = as.factor(DATA$Work_accident) DATA$promotion_last_5years = as.factor(DATA$promotion_last_5years) 히스토그램(Histogram) [연속형 변수 하나를 집계 내는 그래프, 1차원] 히스토그램은 연속형변수를 일정 범위로 구간을 만들어, x축으로 설정하고 y축은 집계된 값(Counting)을 나타내는 그래프입니다. library(ggplot2) # 기본 ggplot(DATA,aes(x=satisfaction_level))+ geom_histogram() ## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`. # 구간 수정 및 색 입히기 ggplot(DATA,aes(x=satisfaction_level))+ geom_histogram(binwidth = 0.01,col='red',fill='royalblue') # col은 테두리, fill은 채우기 밀도그래프(Density Plot)[연속형 변수 하나를 집계 내는 그래프, 1차원] 밀도그래프는 연속형변수를 일정 범위로 구간을 만들어, x축으로 설정하고 y축은 집계된 값(percentage)을 나타내는 그래프입니다. # 기본 ggplot(DATA,aes(x=satisfaction_level))+ geom_density() # 색 입히기 ggplot(DATA,a...